
# Anti-arrhythmic drugs



### Mr. Bairagi S M

Department of Pharmacology MES'S College of Pharmacy, Sonai

### • A-RHYTHM –IA

Defn- Arrhythmia is deviation of heart from

Sino-atrial node

Right atrium

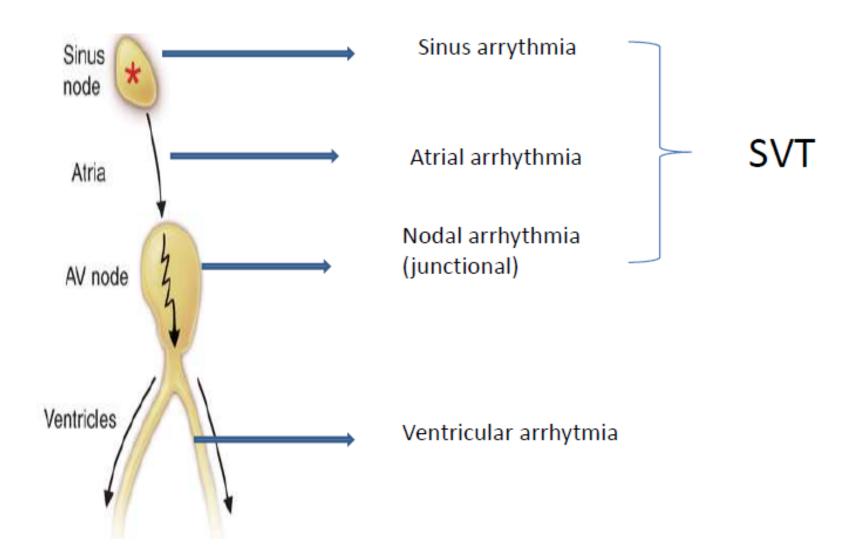
Right Ventricle

Left atrium

Left Ventricle

Atrio-ventricular node

normal RHYTHM.


#### RHYTHM

- 1) HR- 60-100
- Should origin from SAN
- Cardiac impulse should propagate through normal conduction pathway with normal velocity.

# CLASSIFICATION OF ARRHYTHMIAS

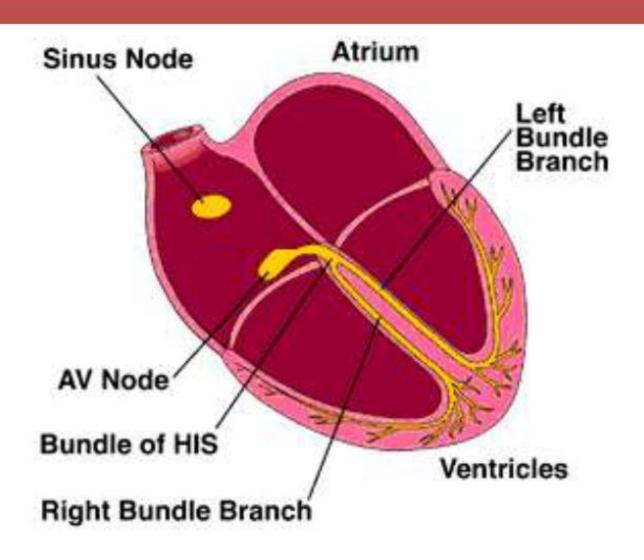
| 500 | Atrial fibrillation   |
|-----|-----------------------|
| 350 | Atrial flutter        |
| 200 | Paroxysmal TA         |
| 150 | Simple tachyarrythmia |
| 100 | Normal range          |
| 60  |                       |
| 40  | Mild bradyarrhythmias |
| 20  | moderate BA           |
|     | Severe BA             |

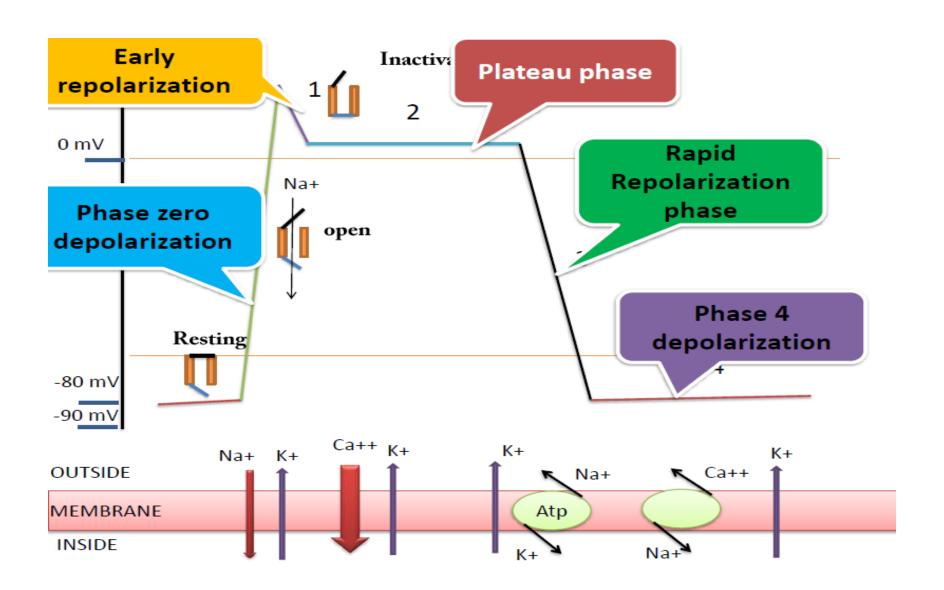
### **ARRHYTHMIAS**



### Electrophysiology of cardiac tissue

- Impulse generation and transmission
- Myocardial action potential
- Depolarization and repolarization waves as seen in ECG


# Types of cardiac tissue (on the basis of impulse generation)


 AUTOMATIC/ PACEMAKER/ CONDUCTING FIBRES

(Ca++ driven tissues)

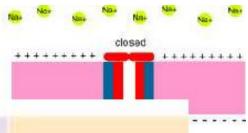
- Includes SA node, AV node, bundle of His, Purkinje fibres
- Capable of generating their own impulse
- Normally SA node acts as Pacemaker of heart
- NON-AUTOMATIC MYOCARDIAL CONTRACTILE FIBRES (Na+ driven tissues)
  - Cannot generate own impulse
  - Includes atria and ventricles

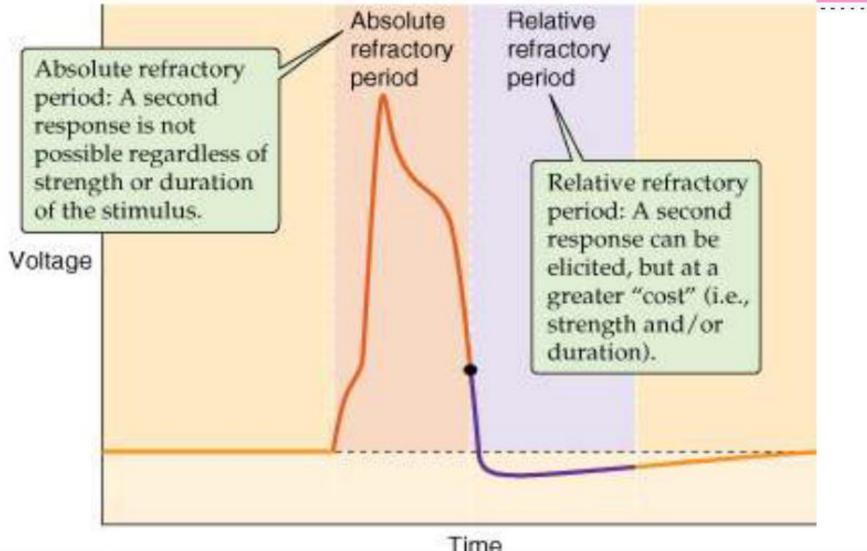
### Impulse generation and transmission





### Fast channel Vs slow channel AP


#### Fast channel AP


- Occurs in atria, ventricles, PF
- Predominant ion in phase-0 is Na+
- Conduction velocity more
- Selective channel blocker is tetradotoxin , LA

#### Slow channel AP

- Occurs in SA node, A-V node
- Predominant ion in phase-0 is Ca<sup>2+</sup>
- Less
- Selective channel blockers are calcium channel blockers

# Refractory period





# ECG is used as a rough guide to some cellular properties of cardiac tissue

- P wave: atrial depolarization
- PR-Interval reflects AV nodal conduction time
- QRS DURATION reflects conduction time in ventricles
- T-wave: ventricular repolarization
- QT interval is a measure of ventricular APD

### Mechanisms of cardiac arrythmia

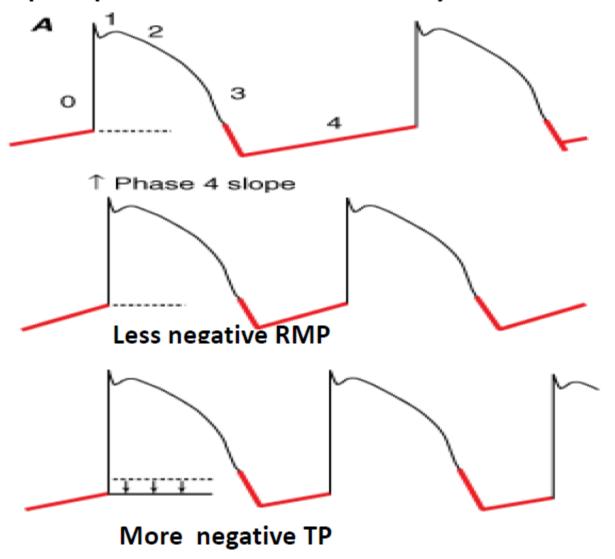
- Abnormal impulse generation:
  - Depressed automaticity
  - Enhanced automaticity
- Triggered activity (after depolarization):
  - · Delayed after depolarization
  - Early after depolarization
- Abnormal impulse conduction:
  - Conduction block
  - Re-entry phenomenon
  - Accessory tract pathways

### a) Enhanced automaticity

Automatic behavior in sites ordinarily lacking pacemaker activity

CAUSES: Ischaemia/digitalis/catecholamines/acidosis/ hypokalemia/stretching of cardiac cells

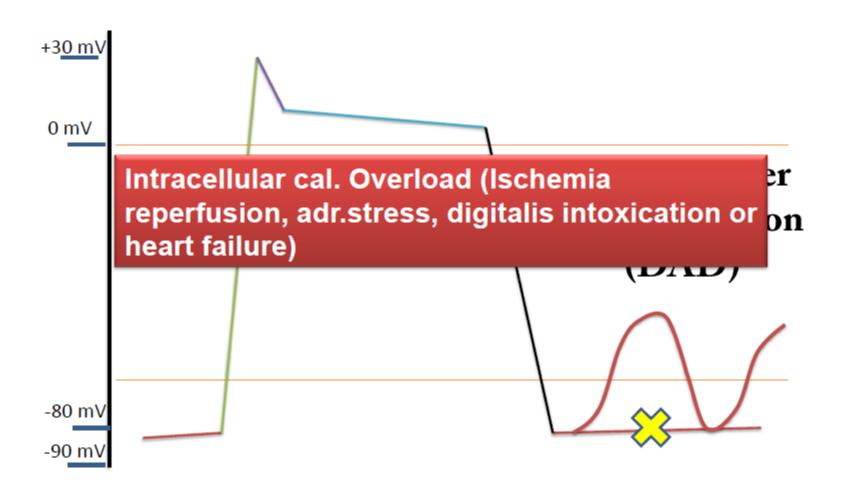



Nonpacemaker nodal tissues: membrane potential comes to -60mv

Increased slope of phase 4 depolarisation



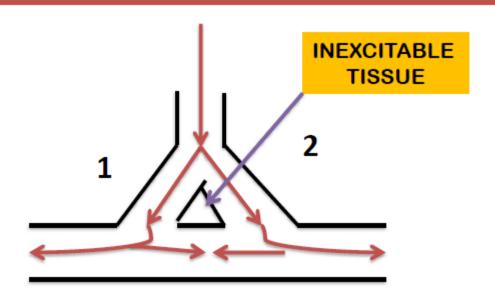

Become ECTOPIC PACEMAKERS.(AV nodal rhythm, idioventricular rhythm, ectopic beats)


### Ectopic pacemaker activity encouraged by

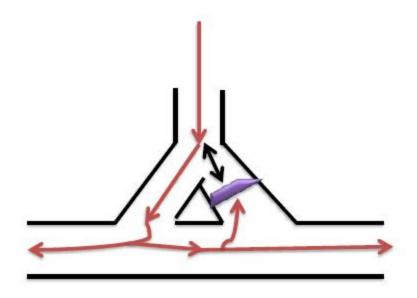


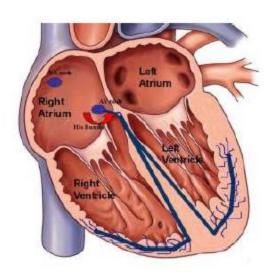
# b) Trigerred automaticity




## b) Trigerred automaticity




### c. Abnormal impulse conduction


- Conduction block
  - First degree block
  - Second degree block
  - Third degree block
- Re-entry phenomenon
- Accessory tract pathways

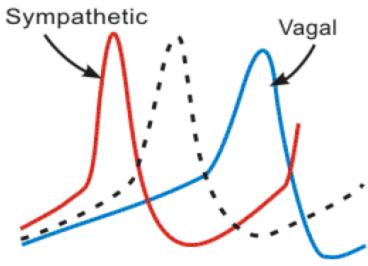
# Re-entry



# Re-entry






### Regulation by autonomic tone

#### Parasympathetic/Vagus Nerve stimulation:

- Ach binds to M2 receptors
- Activate Ach dependent outward K<sup>+</sup> conductance (thus hyperpolarisation)
- ↓ phase 4 AP

#### Sympathetic stimulation:

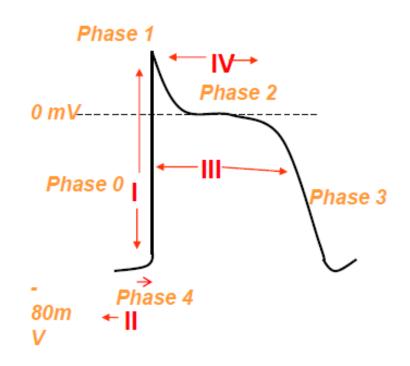
- Activation of β1 receptors
- Augmentation of L-type Ca<sup>2+</sup> current
- Phase 4 AP more steeper



AV Nodal Cell Action Potentials

Effects of Parasympathetic (Vagal) and Sympathetic Nerve Activation on AV Nodal Action Potentials

### Classification of Anti-Arrhythmic Drugs (Vaughan-Williams-Singh..1969)


#### <u>Class I</u>: block Na<sup>+</sup> channels

Ia (quinidine, procainamide, disopyramide) (1-10s)
Ib (lignocaine) (<1s)
Ic (flecainide) (>10s)

<u>Class II</u>: ß-adrenoceptor antagonists (atenolol, sotalol)

<u>Class III</u>: prolong action potential and prolong refractory period (amiodarone, dofetilide, sotalol)

<u>Class IV</u>: Ca<sup>2+</sup> channel antagonists (verapamil, diltiazem)

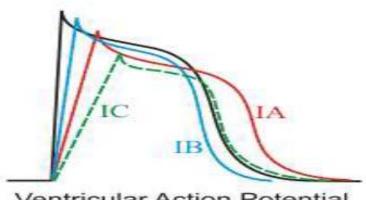


### Classification based on clinical use

- Drugs used for supraventricular arrhythmia`s
  - Adenosine, verapamil, diltiazem
- Drugs used for ventricular arrhythmias
  - Lignocaine, mexelitine, bretylium
- Drugs used for supraventricular as well as ventricular arrhythmias
  - Amiodarone, β- blockers, disopyramide, procainamide

### Na+ channel blocker

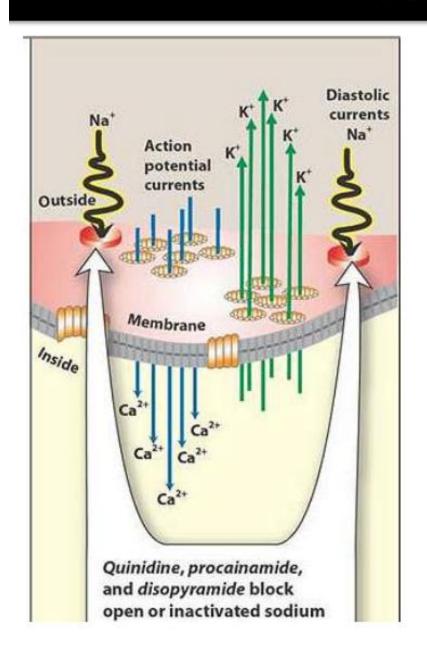
- Bind to and block Na+ channels (and K+ also)
- Act on initial rapid depolarisation (slowing effect)
- Local Anaesthetic (higher concentration): block nerve conduction
- Do not alter resting membrane potential (Membrane Stabilisers)
- At times, post repolarization refractoriness.
- Bind preferentially to the open channel state
- USE DEPENDENCE: The more the channel is in use, the more drug is bound

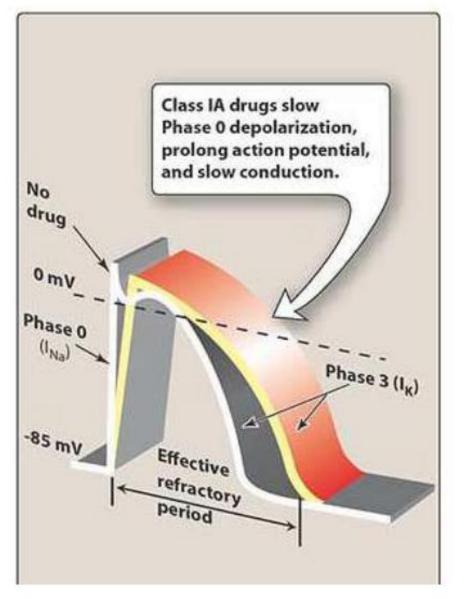

| la                                                                   | lb                                                                                | Ic                                                                    |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Moderate Na channel<br>blockade                                      | Mild Na channel<br>blockade                                                       | Marked Na channel<br>blockade                                         |
| Slow rate of rise of Phase 0                                         | Limited effect on<br>Phase 0                                                      | Markedly reduces rate of rise of phase 0                              |
| Prolong refractoriness<br>by blocking several<br>types of K channels | Little effect on<br>refractoriness as there<br>is minimal effect on K<br>channels | Prolong refractoriness<br>by blocking delayed<br>rectifier K channels |
| Lengthen APD & repolarization                                        | Shorten APD & repolarization                                                      | No effect on APD & repolarization                                     |
| Prolong PR, QRS                                                      | QT unaltered or slightly shortened                                                | Markedly prolong PR<br>& QRS                                          |

### Class I: Na<sup>+</sup> Channel Blockers

IA: T<sub>recovery</sub> moderate (1-10sec) Prolong APD

IB:  $T_{recovery}$  fast (<1sec) Shorten APD in some heart tissues


IC:  $T_{recovery}$  slow(>10sec) Minimal effect on APD




Ventricular Action Potential

- Class IA: e.g., quinidine
  - Moderate Na+-channel blockade
  - ↑ ERP
- Class IB: e.g., lidocaine
  - Weak Na+-channel blockade
  - J ERP
- Class IC: e.g., flecainide
  - Strong Na+-channel blockade
  - $\rightarrow ERP$

### Class IA





- Historically first antiarrhythmic drug used.
- In 18th century, the bark of the cinchona plant was used to treat "rebellious palpitations"

### pharmacological effects

- 1 threshold for excitability
- I automaticity prolongs AP

- Clinical Pharmacokinetics
- well absorbed
- 80% bound to plasma proteins (albumin)
- extensive hepatic oxidative metabolism
- 3-hydroxyquinidine,
- is nearly as potent as quinidine in blocking cardiac Na<sup>+</sup> channels and prolonging cardiac action potentials.

- Uses
- to maintain sinus rhythm in patients with atrial flutter or atrial fibrillation
- to prevent recurrence of ventricular tachycardia or VF

Adverse Effects-

### Non cardiac

- Diarrhea, thrombocytopenia,
- cinchonism & skin rashes.

### cardiac

marked QT-interval prolongation &torsades de pointes (2-8%)

hypotension

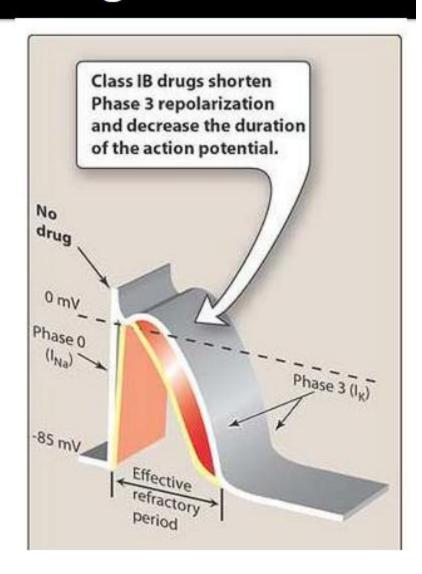
tachycardia

### Drug interactions

- Metabolized by CYP450
- Increases digoxin levels
- Cardiac depression with beta blockers
- Inhibits CYP2D6

## Disopyramide

- Exerts electrophysiologic effects very similar to those of quinidine.
- Better tolerated than quinidine
- exert prominent anticholinergic actions
- Negative ionotropic action.
- A/E-
- precipitation of glaucoma,
- constipation, dry mouth,
- urinary retention


### Procainamide

- Lesser vagolytic action, depression of contractility & fall in BP
- Metabolized by acetylation to N-acetyl procainamide which can block K+ channels
- Doesn't alter plasma digoxin levels
- Cardiac adverse effects like quinidine
- Can cause SLE not recommended > 6 months
- Use: Monomorphic VT, WPW Syndrome

### Class IB drugs

Lignocaine, phenytoin, mexiletine

Block sodium channels also shorten repolarization



### Lignocaine

- Blocks inactivated sodium channels more than open state
- Relatively selective for partially depolarized cells
- Selectively acts on diseased myocardium
- Rapid onset & shorter duration of action
- Useful only in ventricular arrhythmias,
   Digitalis induced ventricular arrnhythmias

Lidocaine is not useful in atrial arrhythmias???

atrial action potentials are so short that the

Na+ channel is in the inactivated state only

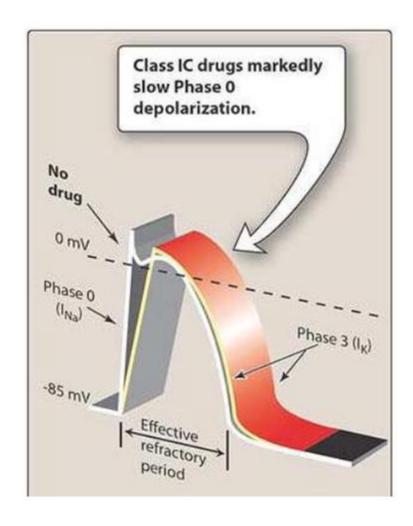
briefly compared with diastolic (recovery)

times, which are relatively long

#### **Pharmacokinetics**

- High first pass metabolism
- Metabolism dependent on hepatic blood flow
- T½ = 8 min distributive, 2 hrs elimination
- Propranolol decreases half life of lignocaine
- Dose= 50-100 mg bolus followed by 20-40 mg every 10-20 min i.v

### Adverse effects


- Relatively safe in recommended doses
- Drowsiness, disorientation, muscle twitchings
- Rarely convulsions, blurred vision, nystagmus
- Least cardiotoxic antiarrhythmic

- Local anaesthetic
- Inactive orally
- Given IV for antiarrhythmic action
- Na+ channel blockade which occurs
- Only in inactive state of Na+ channels
- CNS side effects in high doses
- Action lasts only for 15 min
- Inhibits purkinje fibres and ventricles but
- No action on AVN and SAN so
- Effective in Ventricular arrhythmias only

#### Class I C drugs Encainide, Flecainide, Propafenone

Have minimal effect on repolarization
Are most potent sodium channel blockers

- Risk of cardiac arrest, sudden death so not used commonly
- May be used in severe ventricular arrhythmias



### Propafenone class 1c

- Structural similarity with propranolol & has  $\beta$ -blocking action
- Undergoes variable first pass metabolism
- Reserve drug for ventricular arrhythmias, reentrant tachycardia involving accesory pathway
- Adverse effects: metallic taste, constipation and is proarrhythmic

### Flecainde (Class Ic)

- Potent blocker of Na & K channels with slow unblocking kinetics
- Blocks K channels but does not prolong APD & QT interval
- Maintain sinus rhythm in supraventricular arrhythmias
- Cardiac Arrhythmia Suppression Test (CAST Trial):

When Flecainide & other Class Ic given prophylactically to patients convalescing from Myocardial Infarction it increased mortality by 2½ fold. Therefore the trial had to be prematurely terminated

### Class II: Beta blockers

- β-receptor stimulation:
  - 个 automaticity,
  - 个 AV conduction velocity,
  - ↓ refractory period
- $\beta$ -adrenergic blockers competitively block catecholamine induced stimulation of cardiac  $\beta$  receptors

#### Beta blockers

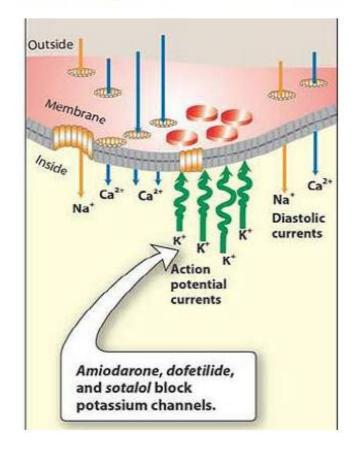
- Depress phase 4 depolarization of pacemaker cells,
- Slow sinus as well as AV nodal conduction :
  - $-\downarrow$  HR,  $\uparrow$  PR
- ↑ ERP, prolong AP Duration by ↓ AV conduction
- Reduce myocardial oxygen demand
- Well tolerated, Safer

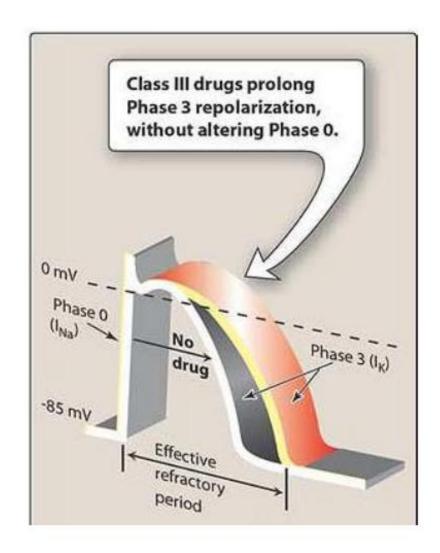
# β Adrenergic Stimulation

### **β Blockers**

| Stimulation                                                      |                                                     |
|------------------------------------------------------------------|-----------------------------------------------------|
| ↑ magnitude of Ca <sup>2+</sup> current & slows its inactivation | ↓ Intracellular Ca <sup>2+</sup> overload           |
| ↑ Pacemaker current→↑<br>heart rate                              | ↓Pacemaker current → ↓ heart rate                   |
| 个 DAD & EAD mediated arrhythmias                                 | Inhibits after-depolarization mediated automaticity |
| Epinephrine induces hypokalemia (β <sub>2</sub> action)          | Propranolol blocks this action                      |

# Use in arrhythmia


- Control supraventricular arrhythmias
  - Atrial flutter, fibrillation, PSVT
- Treat tachyarrhythmias caused by adrenergic +
  - Hyperthyroidism Pheochromocytoma, during anaesthesia with halothane
- Digitalis induced tachyarrythmias
- Prophylactic in post-MI
- Ventricular arrhythmias in prolonged QT syndrome


### Esmolol

- β1 selective agent
- Very short elimination t1/2 :9 mins
- Metabolized by RBC esterases
- Rate control of rapidly conducted AF
- Use:
  - Arrythmia associated with anaesthesia
  - Supraventricular tachycardia

### Class III drugs

↑APD & ↑RP by blocking the K+ channels





#### **Amiodarone**

- Iodine containing long acting drug
- Mechanism of action: (Multiple actions)
  - Prolongs APD by blocking K<sup>+</sup> channels
  - -blocks inactivated sodium channels
  - β blocking action , Blocks Ca<sup>2+</sup> channels
  - $-\downarrow$  Conduction,  $\downarrow$  ectopic automaticity

#### Amiodarone

- Pharmacokinetics:
  - Variable absorption 35-65%
  - -Slow onset 2days to several weeks
  - Duration of action: weeks to months
- Dose
  - -Loading dose: 150 mg over 10min
  - -Then 1 mg/min for 6 hrs
  - —Then maintenance infusion of 0.5 mg/min for 24 hr

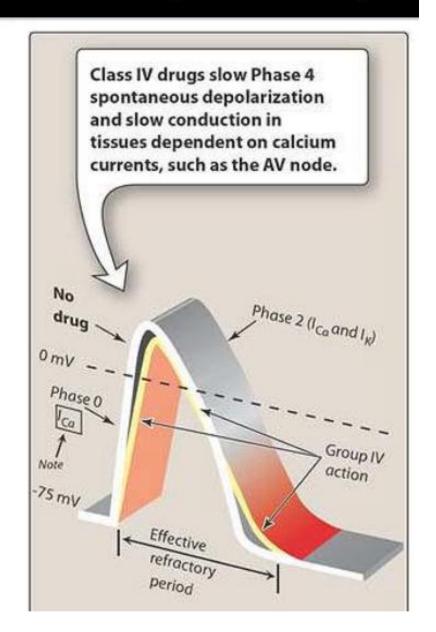
#### Amiodarone

#### Uses:

 Can be used for both supraventricular and ventricular tachycardia

#### Adverse effects:

- Cardiac: heart block, QT prolongation, bradycardia, cardiac failure, hypotension
- Pulmonary: pneumonitis leading to pulmonary fibrosis
- Bluish discoloration of skin, corneal microdeposits
- GIT disturbances, hepatotoxicity
- Blocks peripheral conversion of T4to T3 can cause hypothyroidism or hyperthyroidism


- Antiarrhythmic
- Multiple actions
- lodine containing
- Orally used mainly
- Duration of action is very long (t ½ = 3-8 weeks)
- APD & ERP increases
- Resistant AF, V tach, Recurrent VF are indications
- On prolonged use- pulmonary fibrosis
- Neuropathy may occur
- Eye: corneal microdeposits may occur

# Newer class III drugs

- Dronedarone
- Vernakalant
- Azimilide
- Tedisamil

### Calcium channel blockers (Class IV)

- Inhibit the inward movement of calcium
   ↓ contractility, automaticity, and AV conduction.
- Verapamil & diltiazem



### Verapamil

#### Uses:

- Terminate PSVT
- control ventricular rate in atrial flutter or fibrillation

#### • Drug interactions:

- Displaces digoxin from binding sites
- ↓ renal clearance of digoxin

### Other antiarrhythmics

#### Adenosine :

- Purine nucleoside having short and rapid action
- IV suppresses automaticity, AV conduction and dilates coronaries
- Drug of choice for PSVT
- Adverse events:
  - Nausea, dyspnoea, flushing, headache

#### Adenosine

- Acts on specific G protein-coupled adenosine receptors
- Activates AcH sensitive K+ channels channels in SA node, AV node & Atrium
- Shortens APD, hyperpolarization & ↓ automaticity
- Inhibits effects of 
   \( \backslash \) cAMP with sympathetic stimulation
- ↓ Ca currents
- AV Nodal refractoriness & inhibit DAD's

# Other antiarrhythmics

- Atropine: Used in sinus bradycardia
- Digitalis: Atrial fibrillation and atrial flutter
- Magnesium SO<sub>4</sub>: digitalis induced arrhythmias

# Drugs of choices

| S.<br>No | Arrhythmia               | Drug                                      |
|----------|--------------------------|-------------------------------------------|
| 1        | Sinus tachycardia        | Propranolol                               |
| 2        | Atrial extrasystole      | Propranolol,                              |
| 3        | AF/Flutter               | Esmolol, verapamil, digoxin               |
| 4        | PSVT                     | Adenosine ,esmolol                        |
| 5        | Ventricular Tachycardia  | Lignocaine , procainamide ,<br>Amiodarone |
| 6        | Ventricular fibrillation | Lignocaine, amiodarone                    |
| 7        | A-V block                | Atropine , isoprenaline                   |